In vivo dynamics of the internal fibrous structure in smooth adhesive pads of insects.
نویسندگان
چکیده
Many insects with smooth adhesive pads can rapidly enlarge their contact area by centripetal pulls on the legs, allowing them to cope with sudden mechanical perturbations such as gusts of wind or raindrops. The short time scale of this reaction excludes any neuromuscular control; it is thus more likely to be caused by mechanical properties of the pad's specialized cuticle. This soft cuticle contains numerous branched fibrils oriented almost perpendicularly to the surface. Assuming a fixed volume of the water-filled cuticle, we hypothesized that pulls could decrease the fibril angle, thereby helping the contact area to expand laterally and longitudinally. Three-dimensional fluorescence microscopy on the cuticle of smooth stick insect pads confirmed that pulls significantly reduced the fibril angle. However, the fibril angle variation appeared insufficient to explain the observed increase in contact area. Direct strain measurements in the contact zone demonstrated that pulls not only expand the cuticle laterally, but also add new contact area at the pad's outer edge.
منابع مشابه
Insect tricks: two-phasic foot pad secretion prevents slipping.
Many insects cling to vertical and inverted surfaces with pads that adhere by nanometre-thin films of liquid secretion. This fluid is an emulsion, consisting of watery droplets in an oily continuous phase. The detailed function of its two-phasic nature has remained unclear. Here we show that the pad emulsion provides a mechanism that prevents insects from slipping on smooth substrates. We disco...
متن کاملEvidence for self-cleaning in fluid-based smooth and hairy adhesive systems of insects.
Insects possess adhesive organs that allow attachment to diverse surfaces. Efficient adhesion must be retained throughout their lifetime even when pads are exposed to contamination. Many insects groom their adhesive structures, but it is possible that self-cleaning properties also play an important role. We measured attachment forces of insect pads on glass after contamination with microspheres...
متن کاملPhysical principles of fluid-mediated insect attachment - Shouldn’t insects slip?
Insects use either hairy or smooth adhesive pads to safely adhere to various kinds of surfaces. Although the two types of adhesive pads are morphologically different, they both form contact with the substrate via a thin layer of adhesive fluid. To model adhesion and friction forces generated by insect footpads often a simple "wet adhesion" model is used, in which two flat undeformable substrate...
متن کاملMechanisms of fluid production in smooth adhesive pads of insects.
Insect adhesion is mediated by thin fluid films secreted into the contact zone. As the amount of fluid affects adhesive forces, a control of secretion appears probable. Here, we quantify for the first time the rate of fluid secretion in adhesive pads of cockroaches and stick insects. The volume of footprints deposited during consecutive press-downs decreased exponentially and approached a non-z...
متن کاملEffect of Filter Inhomogeneity on Deep-Bed Filtration Process – A CFD Investigation
Aerosol filtration in fibrous filters is one of the principal methods of removal of solid particles from the gas stream. The classical theory of depth filtration is based on the assumption of existing single fiber efficiency, which may be used to the recalculation of the overall efficiency of the entire filter. There are several reasons for inappropriate estimation of the single fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Acta biomaterialia
دوره 8 7 شماره
صفحات -
تاریخ انتشار 2012